

Week 12

Biological Materials and Hybrid Materials

Exercise 1

Answer these questions by true or false:

1. Biological materials are always amorphous
True/false
2. A protein has a polydispersity index of 1
True/false
3. Sandwich structures are only used for high-tech applications such as helicopter blades
True/false
4. A composite material contains always amorphous and crystalline material
True/false

Exercise 2:

Select the correct answer(s) (more than one answer can be correct)

1. DNA...
 - a. is a polymer
 - b. is stiff due to the double-helix structure
 - c. follows the random coil model
 - d. encodes proteins
2. Reinforced composites...
 - a. Always contain long fibers
 - b. Mechanical properties are given by the reinforcing component
 - c. Can produce materials with superior mechanical properties compared to the single components
 - d. In biology always contain biominerals as reinforcement
 - e.

Exercise 3: Biological materials

- a) What are the 3 main polymer classes found in nature?
- b) What is the building block (monomer type) for each type in a)? (No need for details on the chemistry)
- c) What makes spider silk to be so strong and ductile at the same time?

Exercise 4: Self-assembly

The volume v of a linear hydrocarbon chain with n carbon atoms is given by $v = (27.4 + 26.9n) \times 10^{-3} \text{ nm}^3$, and its critical chain length is $l_c = (0.154 + 0.1265n) \text{ nm}$. An amphiphile has an anionic head-group with an optimum head-group area in aqueous solution of $a_0 = 0.65 \text{ nm}^2$.

- a) What shape of micelles are formed by amphiphiles with linear hydrocarbon tails with $n = 10$?
- b) What is the average size and aggregation number of each micelle?
- c) What happens if n increases?

Exercise 5. For hierarchical composite materials there seems to exist an optimal number of hierarchical levels, explain why it is not just the more levels the better.

Exercise 6: Give two application examples of composite materials and describe the relevant properties given by its structure.